
Chapter 11

Determination of Stress from Faults

Structural geologists observe deformations of rocks. However, they infer or constrain
(paleo)stresses from faults. It is important to know not only the deformation but also the
state of stress when the deformation occurs for the understanding of the mechanics of
tectonics. In this chapter we study the methods for (paleo)stress analysis. The methods
are useful to understand the present state of stress when they are applied to seismologi-
cal data. In addition, the (paleo)stress field is important to understand the migration of
fluids, including hydrocarbons and thermal water. Theories based on the Wallace-Bott
hypothesis are introduced in the first half of this chapter. The sections after Section 11.6
introduce other theories on the relationship between faulting, stress, and deformation.

11.1 Mesoscale faults

We observe fault on various scales at outcrops. Mesoscale faults are minor faults with displacements
that can be grasped at one outcrop (Fig. 11.1), i.e., their displacements range from a few millimeters
to several meters. The slip orientation of a fault is recognized by the scratches or grooves produced
by fault movement on a fault surface. They are called fault striations or simply striae (Fig. 11.2).
Offset of pre-faulting features such as strata tells the sense of shear (Fig. 11.1). Mesoscale faults
can be reactivated. Those faults have two or a few sets of striae with different orientations. For the
overlapping striae, the sense of shear can be identified for each set by asymmetrical minor structures
along the striae [181]. It is possible to determine the relative chronology of the sets by their overlap-
ping relationship. Consequently, one can recognize not only the orientation of a fault surface but the
sense of shear and slip direction for each mesoscale fault. These are referred to as fault-slip data.

For the following reasons, those faults are more often used than large-scale faults to investigate
the stresses responsible for the movement of the faults. Firstly, the much greater number density
of those faults than that of large-scale faults allows us to infer a stress field with a higher spatial
resolution. Secondly, most large faults have a complicated history as they are sometimes reactivated
and a large amount of work is needed to understand that history. Minor faults can be reactivated, but
their history is believed to be simple. Repeated reactivation of a fault increases its total displacement,
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Figure 11.1: Mesoscale faults (arrows) in Pliocene forearc sediments, the Miyazaki Group, northern
Ryukyu arc, Japan [266]. The sediments and the faults are truncated by the angular unconformity
(dotted line) on which Quaternary gravel layers lie, indicating that the faulting is older than the
formation of the unconformity.

but mesoscale faults have small displacements. Thirdly, the deformation of a rock mass caused by
a mesoscale fault within the mass can be treated as an infinitesimal deformation if the rock mass is
very large (§2.7).

The techniques introduced in this chapter utilize fault-slip data obtained from outcrops and ori-
ented borehole cores to constrain (paleo)stresses. If those faults were generated by the present stress
field, the stress that they indicate is the present stress. The same techniques can be applied to seis-
mological data to infer the present stress.

Several methods have been proposed to estimate the state of stress from faults. Among them,
the most popular one is Anderson’s theory of faulting [4]. The theory is still used, as it is very
simple. However, one can trace modern methods back to the papers of the 1950s by Wallace and
Bott [20, 252]. Bott [20] explained the abundance of oblique slip faults, which were incompatible
with Anderson’s theory (§6.3). McKenzie utilized Bott’s principle to infer the state of stress at
an earthquake source [137]. The principle was used to formulate a mathematical inverse method
by Carey and Brunier [35] and by Angelier [6] in the 1970s to infer paleostresses from geological
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Figure 11.2: Fault striations on a fault surface in Early Miocene strata, the Atsumi Formation, North-
east Japan. There are comet-like structures heading right. They were produced by the drag of hard
particles between fault surfaces. These asymmetric structures indicate that this fault is dextral in
sense, i.e., the block on this side of the fault moved left.

faults. The inverse method was applied to many areas in the world. Since the mid 1990s, theoretical
investigations have been carried out on the numerical techniques to separate stresses from fault data
that record plural stresses [60, 161, 209, 264].

11.2 Wallace-Bott hypothesis

11.2.1 Basic equations

Modern methods for determining (paleo)stresses are based on the Wallace-Bott hypothesis [20, 252],
stating that the shear traction applied on a given fault plane causes a slip in the direction and orien-
tation of that shear traction, irrespective of the faults created in an intact rock or along a pre-existing
fracture.

The traction vector at the fault plane whose unit normal is n is given by the equation

t(n) = r · n. (11.1)

From Eqs. (3.16) and (3.17), the normal and tangential components of this vector are the normal
and shear traction vectors

σN = N · r · n = n
[
n · (r · n)

]
(11.2)

σS = (I − N) · r · n = r · n − n
[
n · (r · n)

]
. (11.3)
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Faulting occurs to release the shear stress so the slip direction is indicated by the unit vector −σS/|σS|
instead of σS.

The slip direction of a given fault has a linear relationship with the stress tensor r. To see
this, let us rewrite Eq. (11.3) as σS = f (r, n). Then the linearity is represented by the equation
f (a1r(1) + a2r(2), n) = a1f (r(1), n) + a2f (r(2), n), where σ

(1)
S and σ

(2)
S are stress tensors and a1

and a2 are arbitrary scalar variables. Equation (11.3) is rewritten for these tensors as

σ
(1)
S = (I − N) · r(1) · n,

σ
(2)
S = (I − N) · r(2) · n,

so that we have

a1σ
(1)
S + a2σ

(2)
S = a1(I − N) · r(1) · n + a2(I − N) · r(2) · n

= σS = (I − N) · [a1r(1) + a2r(2)] · n.
Consequently, the slip direction predicted by the Wallace-Bott hypothesis has a linear relationship
with stress tensors.

11.2.2 Graphical expressions of slip directions

The slip direction predicted by the Wallace-Bott hypothesis for a given fault and a stress is shown by
Means’ graphical method1 [142]. A tangent-lineation diagram is a graphical expression of fault-slip
data and is convenient for theoretical considerations.

Means’ graphical method Suppose that a state of stress and a fault orientation are given, and that
the vector s points to the slip direction on the fault by the stress. The vector is obtained through the
following steps. Firstly, the stress axes are plotted on a stereonet whose center indicates the pole to
the fault (Fig. 11.3). The point P on the stereonet denotes the pole. Secondly, let δ1 be the angular
distance between the σ1-axis and the pole, and δ3 be that between the σ3-axis and the pole. We
calculate the parameters

a(1) =
1
2

(σ1 − σ2) sin 2δ1, (11.4)

a(3) =
1
2

(σ2 − σ3) sin 2δ3. (11.5)

Thirdly, the arrows for the unit vectors u(1) and u(2) are drawn from the point P. The former is directed
on the opposite side of the σ1-orientation on the stereonet. The latter is directed from the point P to
the σ3-orientation. Using the parameters defined by Eqs. (11.4) and (11.5), we produce the vectors
s(1) = a(1)u(1) and s(3) = a(3)u(3) and draw them on the stereonet (Fig. 11.3). Finally, the point S is
plotted on the base circle of the stereonet, where the ray PS is parallel to the vector s = s(1) + s(3).
The point S indicates the slip direction on the fault plane by the given stress.

1An exercise at the end of this chapter takes up the theoretical basis for this method.
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Figure 11.3: Graphical method to determine the slip direction of a fault whose pole is plotted at the
center of a stereonet.

Equations (11.4) and (11.5) demonstrate that the slip direction depends not only on the orienta-
tion of stress axes but also on the ratio

R =
σ1 − σ2

σ2 − σ3
. (11.6)

This is related to the stress ratio as R = Φ/(1 −Φ), i.e., the slip direction depends on Φ. If the ratio
is zero, the ray PS0 indicates the slip direction. The ray PS1 indicates the slip direction for the case
of Φ = 1. It should be stressed that Φ influences the slip direction as much as the principal stress
orientations do.

The graphical method demonstrates that slip directions are directed away from the σ1-axis and
toward the σ3-axis. If the fault in Fig. 11.3 is nearly perpendicular to the σ2-axis, the angles δ1 and
δ3 are approximately equal to 90◦. Therefore, a(1) ≈ a(3) ≈ 0, though their signs depend on the tiny
difference of the angles from 90◦. This further indicates that the slip direction, s, is swerved around
the σ2-axis.

Tangent-lineation diagram A tangent-lineation diagram is a convenient graphical method to il-
lustrate the slip directions.

The plane containing the slip vector and the pole to the fault plane is called the M-plane of the
fault. The plane perpendicular to the M- and fault planes is know as an auxiliary plane (Fig. 11.4(a)).
A fault-slip datum is expressed in the diagram by an arrow plotted on a lower-hemisphere stereonet
(Fig. 11.4(b)). The position of the arrow in the stereonet indicates the pole to the fault plane. The
arrow is drawn parallel to the M-plane, and is pointing at the slip direction of the footwall.

Figure 11.5 shows tangent-lineation diagrams for five different stress ratios but with common
principal stress axes. The pattern made up of arrows on a diagram shows a source and sink at the
σ1- and σ3-axes, respectively2. As the cases Φ = 0 and 1 indicate axial stresses, the pattern for those

2The source and sink are called fabric attractors in metamorphic geology [175].
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Figure 11.4: (a) Schematic picture showing the orientation of a reverse fault plane and the direction
of fault movement (bold arrows). The line OQ indicates the orientation of striae, and the point P
is the pole to the fault plane. The arrow attached to the point P indicates the slip direction of the
footwall block. The plane containing the triangle OPQ is called the M-plane for the fault. The plane
perpendicular to the fault plane and M-plane is called the auxiliary plane. (b) Lower-hemisphere
stereonet showing the three planes and the slip direction of the footwall that is depicted by the arrow
attached to the point P. The line OB is the intersection of the fault and auxiliary plane.

cases shows axial symmetry about the σ1- and σ3-axis, respectively. The pattern exhibits orthorhom-
bic symmetry for triaxial stresses, and a saddle point appears at the σ2-orientation. Tangent-lineation
diagram for a set of natural fault-slip data is shown in Fig. 11.6.

11.2.3 Indeterminacy of stress from faults

Fault-slip data constrain the state of stress that was responsible for the faults. However, not all the
stress components are determined. The Wallace-Bott hypothesis indicates that slip directions are
not affected by pore fluid pressure, although it controls the strength of faults. The effective stress
is given by the equation r′ = r − pI. Thanks to the linearity, the slip direction due to r′ is the
linear combination of those by r and −pI. However, the latter is an isotropic stress and causes no
shear traction. Therefore, the pore fluid pressure does not affect the slip direction of a fault. This is
convenient for paleostress analysis, because it is difficult to know the pore fluid pressure on a fault
surface when the fault moved.

It is also difficult to estimate the depth of burial of a fault when it was activated. However, the
depth has little affect on the slip direction. Crustal stress is limited by the brittle strength (§6.7),
and faulting occurs when stress is brought to the limit. Equation (6.21) indicates that the limiting
stress is proportional to the depth z. Let r0 be an arbitrary stress tensor. Since the slip directions
due to stresses r0 and r = qr0 are the same, the slip directions are independent from the depth
of burial. However, this is valid only as an approximation, because stress states inferred by in-situ
measurements more or less deviate from the proportionality.
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Figure 11.5: Tangent-lineation diagrams showing the slip directions of faults by stresses with the
same principal orientations but different stress ratios. The principal orientations are shown in the
lower right box. Open circles in the stereonets indicate the poles to the fault plane.

The slip directions predicted by the Wallace-Bott hypothesis for the stresses r and

r = qr0 − pI (11.7)

are the same for a given fault, whether or not p and q are interpreted as pore pressure and depth.
When the state of stress is illustrated by Mohr circles, p and q indicate the position of the circles on
the abscissa and the size of the circles, respectively. The stresses that have common principal orien-
tations and similar stress ellipsoids have similar Mohr circles, and result in identical slip directions.
The tensor that represents those stresses is termed reduced stress tensor.

Due to the insensibility of the slip direction to these parameters, fault-slip it is not enough to
constrain the mean and differential stresses. However, this is convenient for paleostress analysis,
because we do not need to worry about the depth and pore fluid pressure when each fault was
activated3. These quantities are difficult to estimate.

It is convenient to assume a special form for r0 to consider slip directions. For example, we can

3Researchers have attempted to determine all the stress components from fault-slip data with assumption such as the brittle
strength of rocks [8].
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Figure 11.6: Natural fault-slip data obtained from the Otadai Formation, mid Quaternary forearc
basin deposit in central Japan [151]. The left panel is the tangent-lineation diagram showing the
data. The right panel is the lower-hemisphere stereonet in which the orientations of fault planes
are indicated by great circles. Open circles on the great circles designate the orientation of fault
striations, and arrows attached to the open circles show the sense of shear. If an arrow is attached,
it indicates the slip direction of the hanging wall. If two arrows are attached to an open circle, the
arrows depict the sinistral or dextral sense of shear.

express any stress tensor by combining Eq. (11.7) and

r0 = RT ·
⎛⎝1 0 0

0 Φ 0
0 0 0

⎞⎠ · R, (11.8)

where R indicates the principal stress orientations and Φ = (σ2 − σ3)/(σ1 − σ3) is the stress ratio.
The tensor between RT and R in Eq. (11.8) is a reduced stress tensor, but the definition of a reduced
stress tensor is not unique [7]. Different shapes of reduced tensor is introduced in Section 11.5 and
in Appendix B.

The tensor r0 in the shape of Eq. (11.8) is enough to calculate the slip directions of faults. The
orthogonal tensor R has three degrees of freedom corresponding to the three Euler angles (Fig. C.5).
The reduced stress tensor has one degree of freedom. Therefore, r0 has four degrees of freedom.
However, the stress tensor has six degrees of freedom. The difference corresponds to p and q in Eq.
(11.7). The tensor r0 represents the principal orientations and stress ratio. In this chapter, the term
“a state of stress” is used to denote the stresses with a common r0.

A fault-slip datum does not tightly constrain the principal stress orientations. It should be noted
that different stresses can result in a fault-slip datum. The admissible orientations for the datum are
illustrated in Fig. 11.7. The possible principal σ1 orientation reduces by a decrease of stress ratio,
which in turn expands the possible σ3 orientation. It is known that both the σ1- and σ3-axes exist on
one side of the plane AOC [122]. Namely, if the domain OBC in Fig. 11.7 has the σ1-axis, then the
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Figure 11.7: Stereogram (upper hemisphere) showing the principal stress orientations compatible
with a fault-slip datum. The upper block is assumed to move rightwards on the plane ABCD. P-
and T-axes are contained in the plane AOC and make angles of 45◦ with O. They approximate

the σ1- and σ3-orientations if the Coulomb-Navier criterion holds for this fault. The Wallace-Bott
hypothesis predicts the σ1-axis in the region OBCD for this fault. The σ3-axis is oriented in the
region OBAD. The σ1-orientation is constrained more tightly for a prescribed stress ratio. Dotted
lines with decimal fractions show the rightward limit of the permissible region for the σ1-axis, where
the fractions indicate stress ratios. The lines are obtained from Eq. D.45.

σ3-axis must exist in the domain OAB.

For example, if there are conjugated N–S trending normal faults formed by the E–W extensional
stress with Φ = 0.5 (Fig. 11.8(a)), the stress compatible with the fault-slip data is not unique.
Stresses with a wide variation of principal orientations and stress ratios are compatible with the data.
However, if there are varieties of fault attitudes and of slip directions, the admissible stresses are
constrained as the overlapping region of the dotted and hatched regions in Fig. 11.8(a).

Figure 11.8(b) shows the case of two conjugated normal faults with different ages and different
extensional orientations. If we do not know the difference and we regard them as the results of the
same state of stress, the vertical axial compression is a possible stress compatible with the data, i.e.,
it is not possible to distinguish from the data which scenario is correct, the two-phase or the single-
phase stress history. The set of stress states compatible with given data set are said to be associated
stresses [264]. Other lines of evidence are needed to determine the correct stresses.
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Figure 11.8: Schematic illustrations showing the ambiguity of stresses inferred from fault-slip data.
(a) Conjugated dip-slip normal faults and the principal orientations (squares) of the stress that
formed the faults. Dotted and hatched regions designate the σ1 orientations compatible with the
west- and east-dipping normal faults, respectively. These regions correspond to the solid region in
Fig. 11.7. (b) Two sets of conjugated dip-slip normal faults. The sets were formed successively
by NE–SW and NW–SE extensional stresses. Both stereograms are lower-hemisphere equal-angle
projections.

11.3 Stress inversion

It is possible to determine the state of stress from fault-slip data. The tangent-lineation diagram in
Fig. 11.6 shows a set of natural data collected from mesoscale faults in mid-Quaternary sedimentary
rocks in central Japan. Obviously, many arrows in the diagram are directed along a WNW–ESE
orientation, suggesting that the faults corresponding to the arrows were activated by WNW–ESE
trending extensional stress.

This inference is mathematically formulated as the following inverse method, by which the opti-
mal state of stress is determined from given fault-slip data [6, 7, 190]. Assuming the principal stress
orientations and a stress ratio, we compose a stress tensor r0 using Eq. (11.8). Secondly, the theo-
retical slip direction is calculated by Eq. (11.3) for each fault. Thirdly, let Δ(i) be the angular misfit
between the theoretical and observed slip directions of the ith fault. As we assumed the principal
orientations and stress ratio to be arbitral, it is natural that the directions are not parallel. Then, the
sum

S =
N∑
i=1

f (Δ(i)) (11.9)

can be used as the measure of misfit of the assumed stress state to the data set, where N is the
number of faults and f ( ) is a monotonously decreasing function such as that shown in Fig. 11.9. S
is a function of not only the data but also of the principal orientations and stress ratio. Accordingly,
the optimal state of stress is determined by maximizing S(r0). In inverse theory, this is called an
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Figure 11.9: Graph of a monotonously decreasing function f (Δ) used in stress inversion.

object function.
This method is referred to as stress inversion4. Contrasting with the recent numerical techniques

that are introduced in the next section, this is sometimes called the classical inverse method. The
stress inversion is a non-linear inverse method, because the slip direction is denoted by the unit
vector −σS/|σS|. The non-linearity comes from this division [150].

The optimal stress determined by the stress inversion has uncertainty resulting from the indepen-
dence of the slip direction from p and q in Eq. (11.7). The absolute values of stress components
are not known. Instead, the tensor defined by Eq. (11.8) is determined, i.e., the optimal principal
orientations and the optimal stress ratio are obtained by the inverse method.

Figure 11.10 shows the optimal stress determined through the stress inversion for the natural data
in Fig. 11.6. The result is a WNW–ESE trending extensional stress, which coincides with the stress
roughly inferred by eye from the tangent-lineation diagram of the data.

However, the optimal solution is not satisfactory as the histogram of angular misfits is definitely
bimodal. About two-fifths of the faults have misfits greater than 60◦. The optimal stress cannot
explain the observed slip directions of those faults, indicating that the fault-slip data are heteroge-
neous. Fault-slip data is called heterogeneous if plural stress states were responsible for the faults.
Consequently, the forearc region in central Japan experienced a polyphase stress history since the
Otadai Formation, from which the data were obtained, deposited in the mid Quaternary [151].

Given heterogeneous fault-slip data the object function S(r0) has maxima, and the optimal so-
lution might be a meaningless solution [265]. Thus, we have to input homogeneous fault-slip data
for the calculation. For this purpose, researchers try to sort faults at outcrops by their apparent ages.

There are several criteria [10, 39, 250]. The principal guides for distinguishing the different fault
sets are (1) consideration of stratigraphy or of the age of the rocks affected by a certain deformation,
(2) characterization of the synsedimentary faults such as fault drag, (3) cross-cutting relationships,
(4) superimposed striae on the same fault plane and (5) association of mineral veins. Unfortunately,
these criteria are not always available in the field, especially in young geologic units such as the mid-
Quaternary Otadai Formation. In addition, the resemblance of the orientation of fault planes and slip
directions is sometimes employed for fault sorting. However, many faults with the same orientations

4See [9] for further reading.
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Figure 11.10: (a) Lower-hemisphere stereonet showing the optimal stress determined from the data
shown in Fig. 11.6 via the classical inverse method. The number of data is N = 53. The σ1- and
σ3-axes are nearly vertical and horizontal so that this is a normal faulting regime of stress. The
optimal stress ratio is Φ = 0.09 so that the optimal stress is approximately of axial compression. (b)
Histogram showing the angular misfits for the optimal stress illustrated in the left stereonet.

and the same slip directions can be activated by different stresses (Fig. 11.7). Therefore, such fault
classification implicitly restricts solutions prior to using the stress inversion.

Researchers have tackled the problem how to separate stresses from heterogeneous fault slip
data, and several numerical techniques have been proposed. Before explaining one of the techniques
in Section 11.5, we will introduce an other formulation of the classical stress inversion in the next
section.

11.4 Fry’s formulation of stress inversion

The classical stress inversion is a non-linear inverse method [150]. Fry (1999) [60] divided the
inversion into linear and non-linear parts as follows.

Given a fault-slip datum, a unit vector b on the fault plane is defined perpendicular to the ob-
served slip direction, i.e., b is the null vector [80]. The vector is parallel to the line OB in Fig. 11.4.
If the theoretical slip direction is parallel to the observed one, the traction vector upon the fault plane
should lie on the M-plane. Therefore, b should be perpendicular to the traction vector t(n), i.e.,
b · (r · n) = 0. This is rewritten using components of these vectors and tensors as

3∑
i,j=1

biσijnj = 0. (11.10)

The symmetry of r allows us to rewrite the left-hand side of this equation as

3∑
i,j=1

σijbinj =
3∑

i,j=1

σjibinj =
3∑

i,j=1

σijbjni. (11.11)
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In the last transformation, the dummy indices i and j are exchanged. Consequently, Eq. (11.10) is
rewritten as

3∑
i,j=1

bjσijni = 0. (11.12)

Adding both sides of Eqs. (11.10) and (11.12) gives5

3∑
i,j=1

σijfij = 0, (11.13)

where

fij = binj + bjni.

Note that n and b are observable quantities but r is unknown. Accordingly, we can compose the
tensor fij from the fault-slip datum. In addition, fij has six degrees of freedom, because of the
symmetry fij = fji. Therefore, Eq. (11.13) is further rewritten as the scalar product

s · f = 0, (11.14)

where s = (σ11, σ12, σ13, σ22, σ23, σ33)T and f = (f11, f12, f13, f22, f23, f33)T. The components
of these vectors are independent components of the tensors σij and fij.

Equation (11.14) indicates that the vectors s and f meet at right-angles in six-dimensional space
if the assumed stress r fits the fault-slip datum. If |s · f | does not vanish, r is not appropriate for the
datum. Accordingly, we define the unit vector f = f/|f | so that the endpoint of the position vector
f is represented by a point on the six-dimensional unit sphere.

Let f (k) be the unit vector for the kth datum. If the stress is compatible with all the fault-slip
data, then the stress tensor must satisfy the equation

N∑
k=1

s · f (k) = 0. (11.15)

This equation has the geometrical interpretation that the end points of the unit vectors, f
(1)
, . . . ,

f
(N)

, are on the great circle whose pole is parallel to the vector s. The scalar product s · f becomes
negative in sign if the angle between the two vectors is greater than 90◦. Therefore, the stress
inversion can be reformulated as the least-squares method to minimize the quantity

N∑
k=1

[
s · f (k)]2

.

5Comparing the following equation with Eqs. (2.49) and (2.54) in Section 2.7, it is seen that Eq. (11.13) indicates that
the work done by the shear traction in the orientation perpendicular to the observed slip direction is nil.
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This is equivalent withto

N∑
k=1

[ 6∑
i=1

sif
(k)
i

][ 6∑
j=1

sjf
(k)
j

]
=

N∑
k=1

6∑
i,j=1

sif
(k)
i f

(k)
j sj =

6∑
i,j=1

si

[
N∑
k=1

f
(k)
i f

(k)
j

]
sj = s · g · s,

where

g =

(
N∑
k=1

f
(k)
i f

(k)
j

)
is a six-dimensional, second-order, symmetric tensor, and is composed from given fault-slip data.

The optimal stress determined by the stress inversion has uncertainty resulting from the indepen-
dence of the slip direction from p and q in Eq. (11.7). The absolute values of the stress components
are not known. Accordingly, the uncertainty allows us to assume s to be a unit vector.

The least-squares method that we should solve is to search the optimal vector s that minimizes
the quadratic form s · g · s with the constraint s · s = 1. The constraint designate that the end point
of the vector is on the six-dimensional unit sphere. This extreme value problem is solved through
Lagrange’s method of the undetermined multiplier, i.e., we seek the extremal of the function,

L = s · g · s − λ(s · s − 1) = 2s · (g − λI) · s − λ,
where λ is the Lagrange multiplier. Since the tensor (g−λI) is symmetric, the formula in Eq. (C.61)
applies to this tensor, and we obtain

∂L
∂s

= 2(g · s − λs) = 0.

Consequently, we obtain the characteristic equation,

g · s = λs. (11.16)

A symmetric tensor has real eigenvalues. Therefore, all the roots of this equation are real. We are
seeking the eigenvector s that minimizes L. Noticing s · s = 1, we obtain s · g · s = s · λs = λ from
Eq. (11.16). The left-hand side of this equation equals L so that the minimum absolute eigenvalue
corresponds to the minimum L, and the corresponding eigenvector gives the optimal stress [209].

It was shown that the optimal vector s is parallel to the pole to the great circle along which the

endpoints of the data vectors f
(1)
, . . . , f

(N)
are aligned. Fitting of a great circle to the data vectors

is a eigenproblem to solve Eq. (11.16). This is a linear inverse problem.
Once a great circle is fitted, we have two poles for that circle. If one of the poles is represented by

s, the other is −s. These vectors correspond to the stresses r and −r. Therefore, we have to choose
one of them. The slip directions corresponding to the stresses are given by −σS = ±(N − I) · r · n
(Eq. (11.3)). That is, the stresses causes the opposite sense of movement for entire faults so that
we can choose one of the stresses corresponding to the correct sense of movement. The choice of
the correct pole is a non-linear operation. The stress inversion is, therefore, divided into linear and
non-linear parts6.

6See Appendix B and [203, 269].
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Figure 11.11: Schematic illustrations showing the principle of the multiple inverse method. (a) Data
points are aligned on two great circles (dotted lines) on the six-dimensional unit sphere. (b) White
arcs showing parts of the great circles that are fitted to k-element subsets of the data points, where k
generally equals 5. (c) The poles of the great circles are plotted to exhibit the optimal stress for the
subsets. The poles make clusters at the poles for the great circles indicated by the dotted lines in (a).

11.5 Multiple inverse method

The purpose of this section is to explain the multiple inverse method, a numerical technique used for
separating stresses from heterogeneous fault-slip data [264].

11.5.1 Principle

It was shown in the previous section that the stress inversion is compared to fitting a great circle to
data points on the six-dimensional unit sphere, and that one of the poles of the great circle represents
the optimal stress. Therefore, heterogeneous fault-slip data are represented by data points that are
aligned on plural great circles on the unit sphere. Suppose that a set of observed faults is a mixture
of two assemblages that were activated by two different stresses. Then, the fault-slip data are repre-
sented by two great circles on the unit sphere (Fig. 11.11(a)). Consequently, it is the problem how
to identify the great circles. The basic idea of the method is that the generalized Hough transform
is applicable to this problem. The transform is a technique of artificial intelligence to detect objects
with arbitrary shapes and orientations [31]. The objects in our problem are stress ellipsoids with
different shapes and different orientations.

The method firstly constructs k-element subsets from the entire fault-slip data. Given N faults,
we have NCk subsets, where

NCk =
N!

k!(N − k)!

is the binomial coefficient. Secondly, great circles are fitted to the subsets7. Thirdly, the poles of the
great circles that represent the optimal stresses for the subsets are plotted on the unit sphere. There

7It was shown that the resolution of this method is greatly improved by choosing a particular kind of subsets [168].
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Figure 11.12: Left and right stereograms (lower-hemisphere equal-area projection) showing the σ1-
and σ3-orientations, respectively, of the optimal stresses determined by the multiple inverse method
with k = 5 applied to the fault-slip data shown in Fig. 11.6. Stress ratios are indicated by different
colors. Clusters (shaded) indicates that WNW–ESE and NNE–SSW trending extensional stresses
affected the faulting in the Otadai Formation.

are eventually two clusters of the poles to the two great circles. The clusters are expected to appear at
the correct positions if the data points are plotted within narrow belts along the two great circles, as
most of the great circles fitted to the k-element subsets are nearly parallel to either of the two great
circles (Fig. 11.11(b)). However, if the belts are wide or the number of data points is small, the
density of the clusters decreases. The density designates the statistical significance of the stresses
represented by the clusters.

Tthe final task is to detect the clusters. For this purpose, the optimal stresses are mapped onto
a stereogram. The stress ratios of the optimal stresses are depicted by colors. Figure 11.12 shows
an example, where WNW–ESE and NNE–SSW trending extensional stresses are detected from the
fault-slip data exhibited in Fig. 11.6. The former is represented by the cluster of blue squares in
Fig. 11.12, and the color indicates Φ ≈ 0.1. Therefore, the classical inverse method detected the
WNW–ESE extension (Fig. 11.10).

11.5.2 Average and spread of clusters

The right stereogram in Fig. 11.6 demonstrates that the density and spread of the clusters indicate
the WNW–ESE extension is statistically more significant than the NNE–SSW extension. The spread
of a cluster is quantified as follows.

Firstly, we introduce the stress difference, a parameter to quantify the difference between two
stress states [164]. The uncertainty related to p and q in Eq. (11.7) demonstrates that the mean
and differential stresses are indeterminable for the stress inversion. In addition, the definition of
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a reduced stress tensor is not unique. Accordingly, we define the reduced stress tensor r so as to
satisfy the two conditions

trace r = σ11 + σ22 + σ33 = 0 (11.17)

and the octahedral shear stress of unity. Equation (11.17) indicates that r is a deviatoric tensor so
that the second basic invariant of this tensor is given by Eq. (4.13). Following Eq. (4.17), we have
the second condition as

1
3

(
σ2

11 + σ
2
22 + σ

2
33 + 2σ2

12 + 2σ2
23 + 2σ2

31

)
= 1. (11.18)

Using the reduced stress, we have the stress tensor R · r · RT for the stress tensor inversion.
Secondly, given two reduced stress tensors, r(1) and r(2), the difference between the stress states

represented by the tensors is defined by the octahedral shear stress of the tensor D = r(1) − r(2).
Namely, the difference is given by

D =
1
3

√
(Δ11 − Δ22)2 + (Δ22 − Δ33)2 + (Δ33 − Δ11)2 + 6 (Δ12)2 + 6 (Δ23)2 + 6 (Δ31)2. (11.19)

Orife and Lisle [164] term this parameter “stress difference”, and demonstrate that D is in the range
between 0 and 2 for any combination of reduced stress tensors provided that they satisfy the con-
ditions indicated by Eqs. (11.17) and (11.18). The similarlity between two reduced stress tensors
is indicated by (2 − D). If D = 0, the two stress states result in the same slip directions whatever
the orientations of faults are. If D = 2, the two stress states cause faulting with the opposite slip
directions. The couple of stresses with D = 2 are called inverse stresses.

Finally, the spread of stress states is defined as follows. Given m reduced stress tensors, r(1)
, . . . ,

r(m), their average is defined by

〈r〉 = 1
m

[
r(1) + · · · + r(m)

]
. (11.20)

The average principal orientations are obtained as the eigenvectors of this tensor, and the average
stress ratio is given by the equation

〈Φ〉 = 〈σ〉2 − 〈σ〉3

〈σ〉1 − 〈σ〉3
,

where 〈σ〉i is the ith largest eigenvalue of the tensor 〈r〉. The spread of the reduced stress tensors
around the average is defined by the average stress difference

〈D〉 = 1
m

[
D(1) + · · · +D(m)] , (11.21)

whereD(i) is the stress difference between r(i) and the reduced stress tensor derived 〈r〉. The greater
the scatter of the stress states the larger the average stress difference. Therefore, 〈D〉 is a measure of
the spread of stress states8.

8he average of the values of 2 sin−1(D/2) is more useful than that of D values. See Appendix B.
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Figure 11.13: Mohr circles for a triaxial stress and the slope tanχ.

The multiple inverse method yields clusters of stress states, and the center and spread of a cluster
are evaluated by Eqs. (11.20) and (11.21). The identification of those clusters can be computerized
using the k-means algorithm [167], a technique of artificial intelligence [52], with the average and
spread of the clusters.

It is difficult to apply stress inversion to fold belts as the timing of faulting relative to folding is
difficult to know. Therefore, it is sometimes assumed a-priori that a reverse faulting regime of stress
accompanied folding.

The bedding tilt test used in paleomagnetism can be applied to this problem using the multiple
inverse method and the average and spread of clusters [270]. Paleomagnetists uses the statistic α95 to
evaluate the spread of paleomagnetic vectors determined at various parts of a fold [32]. The larger the
statistic, the more the vectors are scattered. If rocks in the fold acquired the paleomagnetism before
folding, untilting of the vectors makes α95 smaller. If, on the other hand, the rocks were magnetized
after folding, the statistic becomes larger by the untilting. Therefore, the statistic works as an object
function to be minimized in the inverse problem to determine the optimal timing magnetization
relative to folding.

Similarly, we are able to use 〈D〉 instead of α95 to be minimized in the inverse problem for
determining the optimal timing of faulting relative to folding. This test procedure was applied to
mesoscale faults in a Quaternary fold in central Japan and revealed that the majority of the faults
were activated by a strike-slip faulting regime of stress at the middle of folding [270].

11.6 Slip tendency

The Wallace-Bott hypothesis concerns the fact that any faults can be activated, unless the fault plane
is one of the principal planes of stress. Shear stress on the plane vanishes so that those faults cannot
move. However, if fault planes have the same coefficient of friction, faults nearly parallel to the
principal plane may be difficult to move compared to those oblique to the principal planes. The
magnitude of shear stress is depicted by the Mohr diagram (Figs. 4.6 and 11.13).

Slip tendency [157] is a yardstick for the mobility of fault surfaces under a given stress r. The
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Figure 11.14: Stereonets showing slip tendency Ts for three stresses with the same principal orien-
tations (open circles) but with different stress ratios, Φ = 0, 0.5 and 1.

frictional resistance of the fault with the unit normal n is μfσN = μf (n · r · n). A fault is thought
to be preferable for r if the shear stress on the fault, σS = |(I − N) · r · n|, is much large compared
with Fs, i.e., the slip tendency is defined as

Ts ≡
∣∣∣∣ σS

μfσN

∣∣∣∣ =
1
μf

∣∣∣∣ (I − N) · r · n
n · r · n

∣∣∣∣ .
Ts is a function of n, r and μf . Given r and μf , Ts has the maximum Tmax

s for the fault orientations.

For simplicity, we assume that all faults have the same coefficient of friction to investigate the
relationship of the mobility with fault orientations. Then, the angle χ shown in Fig. 11.13 is related
to the slip tendency as tanχ = Ts. The points A, B and C have a common normal stress but different
shear stresses. The points A and B have maximum and minimum χs, respectively. It is obvious that
the fault plane designated by point D has the maximum χ, because the line OD is tangent to the outer
Mohr circle. However, the Mohr diagram is not convenient to see how the slip tendency changes
with different orientations.

Therefore, the ratio Ts/T
max
s is a convenient measure to consider the orientation-dependence of

the slip tendency. The variation of this ratio is shown by the gray scales in Fig. 11.14. The central
panel in this figure illustrates the relationship between the slip tendency and fault orientations for
triaxial stresses. There are two dark spots in the stereogram, demonstrating that the fault surfaces
parallel to the σ2-axis and making an acute angle with σ1-axis have a maximum slip tendency under
triaxial stresses. The two spots represent conjugate faults. The slip tendency has a orthorhombic
symmetry with respect to the principal planes of stress.

In contrast, the slip tendency for axial compression and axial tension has axial symmetry with
respect to the σ1- and σ3-axes, respectively (Fig. 11.14). The planes tangent to a cone whose axis is
parallel to the symmetry axis of stress are referentially activated as faults [95].

In reality, every fault may have its own coefficient of friction, and pore pressure may be different
for each faulting event. Accordingly, the slip tendency is not the only factor to indicate the mobility.
However, Fig. 11.14 helps in considering fault activity under a specified state of stress.
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Figure 11.15: Strain of a rock mass by the activity of fault sets in the mass, where faults belonging
to a set have similar fault orientations and slip directions. Rectangle ABCD indicates the initial top
surface of the mass. The z-axis is defined as being vertically downward. Although displacement is
shown along two or several faults for each set, the parallel faults carry similar displacements. (a)
The activity of a set of normal faults parallel to the y-axis and slip direction normal to the y-axis, the
mass suffers a plane strain on the xz-plane. The points B and C are transferred to B′ and C′ by the
faulting, resulting in an inclined top surface AB′C′D. (b) Two sets of faults making up conjugated
normal faults. If the total displacements of each set are equal to each other, the top surface remains
horizontal only to subside to the rectangle A′B′C′D′. The deformation of the mass is approximated
by a pure shear. (c) Four sets of faults leading to a three-dimensional coaxial deformation, i.e., the
top surface is kept horizontal.

11.7 Faulting controlled by strain

A rock mass encompassing faults deforms by the fault activity (Fig. 1.17). If there are a lot of faults
with much smaller displacements than the size of the mass, the deformation can be regarded as a
continuous plastic deformation.

Faulting obeying Anderson’s theory leads only to a plane strain (Exercise 11.1). However, strains
may be generally three-dimensional. The faulting predicted by the Wallace-Bott hypothesis allows
three-dimensional strains. When we used the hypothesis, stress was assumed to control faulting.
However, stress is not observable. We observe the strain of a rock mass through faults, and the
hypothesis transforms strain into stress. In contrast, what would happen if strain controls faulting?
The present and next sections deal with this problem.

Natural faults often form groups with similar orientations and slip directions. Here, we sort faults
by the orientations and directions into sets of faults (Fig. 11.15). One region may have multiple sets
of faults, which may or may not have been activated at the same time.

For simplicity, we assume that all faults belonging to a set have the same displacements and that
they are uniformly distributed in the rock mass. Then, the deformation of the mass due to internal
fault activity can be regarded as a uniform deformation. The deformation by a single set of faults
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equals an infinitesimal simple shear in the M-plane of the faults. The top surface ABCE in Fig.
11.15(a) is transformed into the inclined rectangle AB′C′D by this simple shear unless the fault
planes are horizontal. Two sets of faults enable pure shears that keep the top surface horizontal (Fig.
11.15(b)). If there are four sets of faults, coaxial deformations are possible (Fig. 11.15(c)).

Not only coaxial but also any three-dimensional deformations are possible if there are at least
four fault sets [193]. Here, faulting is assumed not to accompany any volume change of the rock
mass, so that we have |F| = 1, where F is the deformation gradient of the rock mass. F has nine in-
dependent components in three dimensions. However, the volume conservation reduces the degrees
of freedom of F to eight. One set has two degrees of freedom, the rake of slip direction on the fault
planes and the parameter q of the simple shear (Eq. (1.13)), if the orientations of fault planes are
given. Therefore, four fault sets are sufficient to accommodate a general incompressive deformation
in three dimensions.

If a three-dimensional deformation controls faulting, at least a few sets of faults should be acti-
vated to accommodate the deformation. Fault systems comprised of four fault sets are often observed
in the field and in clay cake experiments [131, 163, 193, 195].

11.8 Reches’ model

We now consider faulting controlled by a prescribed strain of a rock mass that includes the faults.
Reches [193, 194] applied a classical theory of the plastic deformation of single crystals. The plastic
deformation is due to the movement of dislocations through the crystal lattice. The lattice structure
allows a limited number of slip systems whose glide planes and slip directions are constrained.
For example, a face-centered cubic lattice has 12 slip systems. Minimizing energy dissipation,
Taylor (1938) linked the slippage on the planes with the macroscopic deformation of the crystal
containing the slip systems [239]. Unlike single crystals, a rock mass has numberless planes of
fractures with various orientations that are capable of faulting. However, the following argument
reduces the possible number of fault sets to four.

It is assumed that there are numberless pre-existing fractures capable of accommodating an ap-
plied three-dimensional coaxial strain, but that most preferable surfaces are activated. The rock
mass is also assumed to be homogeneous and isotropic in the broad view so that the stress and
strain have the same principal orientations. Since the controlling factor is the coaxial strain that has
an orthorhombic symmetry about the principal planes of strain, the resultant faulting may have the
same symmetry, i.e., the four sets of faults the orientations of which are arranged symmetrically
with respect to the planes (Fig. 11.16(a)). Four sets are necessary and sufficient to accommodate the
prescribed strain of the rock mass. To keep the symmetry, they carry the same magnitude of strain.
Here, they are called orthorhombic fault sets.

Each fault set has many faults but the displacements are very small compared to the dimension
of the rock mass. In addition, faults belonging to a set are located with constant intervals. Therefore,
the deformation of the mass is regarded as continuous and homogeneous. Let the unit vectors n(i) =
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Figure 11.16: (a) Orthorhombic fault sets arranged symmetrical with respect to the principal planes
of stress. Equal-angle projection. The rectangular Cartesian coordinates O-123 are defined as being
parallel to the principal axes of strain. The O-1 axis is directed out of the page. Ordinal numbers of
the fault sets are encircled. Gray arrows points the slip directions. (b) The rock mass encompassing
the fault sets is assumed to suffer a coaxial deformation by the slippage on the faults, each of which
carries a simple shear. The unit vectors n(i) and s(i) represent the pole to the fault planes and slip
direction of the ith set, respectively.

(
n

(i)
1 , n

(i)
2 , n

(i)
3

)
T and s(i) =

(
s

(i)
1 , s

(i)
2 , s

(i)
3

)
T be the unit normal and slip direction of the ith fault

set (Fig. 11.16(b)), where the coordinates O-123 are defined parallel to the principal axes of stress
of the rock mass (Fig. 11.16(a)). From the orthorhombic symmetry, we have

n(1) =

⎛⎝ n1

n2

n3

⎞⎠ , n(2) =

⎛⎝ n1

−n2

n3

⎞⎠ , n(3) =

⎛⎝−n1

−n2

n3

⎞⎠ , n(4) =

⎛⎝−n1

n2

n3

⎞⎠ (11.22)

and

s(1) =

⎛⎝ s1

s2

s3

⎞⎠ , s(2) =

⎛⎝ s1

−s2

s3

⎞⎠ , s(3) =

⎛⎝−s1

−s2

s3

⎞⎠ , s(4) =

⎛⎝−s1

s2

s3

⎞⎠ , (11.23)

where 0 ≤ n1, n2, n3. The hypothesis of orthorhombic fault sets results in a tight constraint between
n and s.

Suppose the rock mass has M faults. Let f(i) = I + δf(i) be the deformation gradient due to the
ith fault, where i represents the sequence of faulting. Then the total strain of the rock mass is given
by the multiplication F = f(M) · · · f(1) =

[
I + δf(M)] · · · [I + δf(1)] ≈ I + f(M) + · · · + f(1), where

second-order terms are neglected. Since the addition of matrices is commutative, the total strain is
independent from the order of fault activity. Therefore, we define F(i) = I + δF(i) as the deformation
gradient due to the faults belonging to the ith fault set, when we have the deviation of the total strain
from I,

δF = δF(1) + δF(2) + δF(3) + δF(3). (11.24)
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Comparing Eqs. (2.53) and (11.24), we have

δF(i) = γ (i)s(i)n(i), (11.25)

where γ (i) represents the contribution of the ith set to the total strain. F(i) represents an infinitesimal
simple shear. Therefore, taking a proper coordinate system, we have also the following expression
(Eq. (1.13)):

F(i) =

⎛⎝1 2q(i) 0
0 1 0
0 0 1

⎞⎠ ∴ δF(i) =

⎛⎝0 2q(i) 0
0 0 0
0 0 0

⎞⎠ .

Since q in these matrices represents the infinitesimal shear strain that is half of the engineering
shear strain (p. 34), γ (i) in Eq. (11.25) represents the engineering shear strain for the ith set. The
orthorhombic symmetry requires

γ ≡ γ (1) = γ (2) = γ (3) = γ (4). (11.26)

Combining Eqs. (11.22)–(11.26), we obtain the total deformation

δF = γ

⎛⎝n1s1 n2s1 n3s1

n1s2 n2s2 n3s2

n1s3 n2s3 n3s3

⎞⎠ + γ

⎛⎝ n1s1 −n2s1 n3s1

−n1s2 n2s2 −n3s2

n1s3 −n2s3 n3s3

⎞⎠
+ γ

⎛⎝ n1s1 n2s1 −n3s1

n1s2 n2s2 −n3s2

−n1s3 −n2s3 n3s3

⎞⎠ + γ

⎛⎝ n1s1 −n2s1 −n3s1

−n1s2 n2s2 n3s2

−n1s3 n2s3 n3s3

⎞⎠ = 4γ

⎛⎝n1s1 0 0
0 n2s2 0
0 0 n3s3

⎞⎠ .

Hence, the symmetry of this tensor indicates that the deformation of the rock mass due to the or-
thorhombic fault sets is irrotational X = O, as we have so assumed. Therefore, from Eq. (2.10), we
obtain the infinitesimal strain tensor

e = 4γ

⎛⎝n1s1 0 0
0 n2s2 0
0 0 n3s3

⎞⎠ . (11.27)

We have defined the coordinate system parallel to the principal axes of strain. Hence, from Eq.
(11.27) we have

ε1 = 4γn1s1, (11.28)

ε2 = 4γn2s2, (11.29)

ε3 = 4γn3s3. (11.30)

The volume conservation is expressed by

ε1 + ε2 + ε3 = 0. (11.31)
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Table 11.1: Strain states and the parameters Φε and k.
k Φε Principal strains Strain state
1 1 ε1 = ε2 Constrictional strain
0 1/2 ε2 = 0, ε1 = −ε3 Plane strain

–1/2 0 ε2 = ε3 Flattening strain

The principal strains are defined to satisfy ε3 ≤ ε2 ≤ ε1. Therefore, ε1 ≥ 0, ε3 ≤ 0. The
intermediate principal strain ε2 has positive and negative signs depending on the strain of the rock
mass. Now, we introduce the parameter

Φε =
ε2 − ε3

ε1 − ε3
(0 ≤ Φε ≤ 1)

to indicate the shape of the strain ellipsoid. Φε = 0 and 1 designate flattening (ε3 = ε2 < ε1) and
constrictional (ε3 < ε2 = ε1) strains, respectively. Φε in-between indicates a triaxial strain ellipsoid,
whereas Φε = 1/2 represents plane strain. Since Φε is defined as the same form as the stress ratio
(Eq. (4.5)), Φε is convenient to envisage a strain ellipsoid. However, the parameter

k = ε2/ε1 (−1/2 ≤ k ≤ 1) (11.32)

is convenient for the following arguments. This is related with Φε as

Φε =
1 + 2k
2 + k

, k = −2Φε − 1
Φε − 2

.

The correspondence between k and the strain states are shown in Table 11.1. The parameter k is
controlled from outside the system.

From Eqs. (11.28) and (11.29), we have ε1n2s2 = ε2n1s1 and, using the parameter k, we obtain

kn1s1 − n2s2 = 0. (11.33)

On the other hand, n and s satisfies the relations

n1s1 + n2s2 + n3s3 = 0, (11.34)

n2
1 + n

2
2 + n

2
3 = 1, (11.35)

s2
1 + s

2
2 + s

2
3 = 1 (11.36)

by definition. The total number of components of n and s is six, but Eqs. (11.33)–(11.36) designate
that only two of them are free. Accordingly, here we choose n1 and n2 as the independent variables
for the following argument. Eliminating s2, s3 and n3 from Eqs. (11.33)–(11.36), we obtain

s1 = ±

√√√√√√√
1 − n2

1 − n2
2

1 − n2
2 − n2

1

[(
1 − n2

1

n2
2

)
k2 + 2k

] . (11.37)
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The eliminated values s2, s3 and n3 are calculated using the four equations, i.e., s is linked with n

through the orthorhombic symmetry. Once the two variables n1 and n2 are specified, the fault activity
to accommodate the prescribed strain is constrained.

The next problem is how the variables n1 and n2 are chosen. To solve this problem, we assume
that the frictional resistance

τR = τ0 + (tanφ) σN (11.38)

works on a fault plane with the parameters τ0 and φ common to all faults. Namely, while a fault is
moving, the shear stress on the fault plane is equal to

σS = τR (11.39)

Note that the rock mass is assumed to be isotropic. Therefore, the principal axes of stress coincide
with the coordinate system, and the normal and shear stresses satisfy the following relationship with
principal stresses:

σN = t(n) · n = σ1n
2
1 + σ2n

2
2 + σ3n

2
3, (11.40)

σS = t(n) · s = σ1n1s1 + σ2n2s2 + σ3n3s3. (11.41)

Rearranging Eqs. (11.33)–(11.41), we obtain(
σ1 − σ3

) (
n1s1 − n2

1 tanφ
)
+
(
σ2 − σ3

) (
kn1s1 − n2

2 tanφ
)
= τ0 + (tanφ)σ3. (11.42)

This relationship is satisfied when a fault is slipping.
We have assumed a uniform spacing between faults. Consider a set to have n faults within a cube

that has a unit length of sides. If one of the faces of the cube is parallel to the faults, the spacing
equals 1/n. Since the engineering shear strain of the cube is γ, the displacement of each fault is γ/n.
The cube deforms in a similar way to a deck of cards. The n faults move by the distance γ/n against
the resisting force τR × (unit area) = τR. Therefore, the energy dissipation by the n faults within the
unit volume of the cube is

w = σSγ. (11.43)

Combining Eqs. (11.28), (11.33), (11.34), (11.41) and (11.43), we obtain the total dissipation due
to the four sets in a unit volume The four sets of faults dissipate in a unit volume of the rock mass

4w = 4σSγ = 4
(
σ1n1s1 + σ2n2s2 + σ3n3s3

) · ε1

4n1s1

=
[
σ1n1s1 + σ2n2s2 + σ3n3s3 − (σ3n1s1 + σ3n2s2 + σ3n3s3)

] ε1

n1s1

=
[(
σ1 − σ3

)
n1s1 +

(
σ2 − σ3

)
n2s2

] ε1

n1s1

=
[
(σ1 − σ3) + (σ2 − σ3)k

]
ε1.
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Accordingly, the total dissipation is proportional to the strain ε1. Let us define the symbol W to
denote the constant of proportionality

W = (σ1 − σ3) + (σ2 − σ3)k. (11.44)

This is the dissipation for every incremental strain ∂(4w)/∂ε1 = W . Using Φ = (σ2 − σ3)/(σ1 − σ3)
and Δσ = σ1 − σ3, Eq. (11.44) is rewritten as

W = (1 + Φk)Δσ (11.45)

and Eq. (11.42) is rewritten as[
(1 + Φk) n1s1 −

(
n2

1 + Φn2
2

)
tanφ

]
Δσ = τ0 + (tanφ)σ3. (11.46)

The friction is thought to be dependent on confining pressure (Eq. (11.38)), so we regard σ3 as a
variable controlled from outside this system instead of the confining pressure.

Since there are pre-existing fractures with various orientations in the rock mass, some of which
are chosen as faults, then the faults that can be activated by the minimum differential stress may be
chosen. The right-hand side of Eq. (11.46) and Δσ are, by definition, positive in sign. In addition,
the right-hand side is given. Hence, the minimization of Δσ is achieved by determining the optimal
combination of n1, n2 and Φ that maximizes the content of the brackets in the left-hand side of Eq.
(11.46). We have the analytical solutions for the cases k = −1/2, 0 and 1.

Constrictional strain is represented by k = 1. Then, the stress tensor and the fault sets are
expected to have axial symmetry. Therefore,

σ1 = σ2, n1 = n2. (11.47)

Substituting these into Eq. (11.37), we have

s1 =

√
1 − 2n2

1

2
. (11.48)

Substituting Eqs. (11.47) and (11.48) into Eqs. (11.45) and (11.46), we obtain

2Δσ = W, (11.49)

2Δσ

⎛⎝n1

√
1 − 2n2

1

2
− n2

1 tanφ

⎞⎠ = τ0 + (tanφ)σ3. (11.50)

Therefore, the dissipation W is minimized when Δσ is minimized (Eq. (11.49)). The optimal n1 is
obtained by maximizing the content of the parentheses in the left-hand side of Eq. (11.50). Solving
the equation

d
dn

⎛⎝n1

√
1 − 2n2

1

2
− n2

1 tanφ

⎞⎠ =

√
1 − 3n1

2(1 − 2n1)
− 2n1 tanφ = 0,
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and using Eqs. (11.47) and (11.48), we obtain the fault orientation and slip direction of the case of
constrictional strain:

n1 =
1
2

√
1 − sinφ, n2 = n1, s1

1
2

√
1 + sinφ. (11.51)

Plane strain is indicated by k = 0 and ε2 = 0. Due to the symmetry,

n2 = 0. (11.52)

Combining Eqs. (11.37) and (11.52), we have

s1 =
√

1 − n2
1 (11.53)

and combining Eqs. (11.45) and (11.46), we obtain

Δσ = W, (11.54)

Δσ

(
n1

√
1 − n2

1 − n2
1 tanφ

)
= τ0 + (tanφ)σ3. (11.55)

Δσ fluctuates with W , again. Similar to the above discussion, it is found that the minimum Δσ
requires

n1 =

√
2

2

√
1 − sinφ, n2 = 0, s1 =

√
2

2

√
1 − sinφ. (11.56)

Flattening is indicated by k = −1/2 and ε2 = ε3. Due to symmetry, we have

n2 = n3, σ2 = σ3. (11.57)

Combining Eqs. (11.35), (11.37) and (11.57),

n1 =
√

1 − 2n2
2, s1 =

√
3(1 − n2

1). (11.58)

In this case, we have

Δσ = W, (11.59)

Δσ

(
n1

√
1 − n2

1 − n2
1 tanφ

)
= τ0 + (tanφ)σ3. (11.60)

Δσ is minimized when

n1 =

√
2

2

√
1 − sinφ, n2 =

1
2

√
1 + sinφ, s1 =

√
2

2

√
1 + sinφ. (11.61)

Interestingly, the three cases have a common minimum differential stress, which is obtained from
Eqs. (11.49)–(11.51), (11.54)–(11.56) and (11.59)–(11.61):

Δσmin =
2 cosφ

1 − sinφ
[τ0 + (tanφ)σ3] . (11.62)
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Figure 11.17: Equal-area projection showing the pole of the fault surfaces activated to accommodate
a prescribed coaxial strain of the rock mass that includes the faults [194]. The pole of one of the
orthorhombic fault sets is shown on a quadrant.

The resistance is assumed to be proportional to σ3 (Eq. (11.38)), which is the substitution of con-
fining pressure. The differential stress inherits the proportionality. The constant of proportionality
equals 2 cosφ tanφ/(1 − sinφ). Substituting a representative value of rocks, e.g. φ = 35◦, we have
(σ1 − σ3) ∝ 2.7σ3, i.e., σ1 is about 1.7 times greater than σ3.

The stress conditions and optimal fault sets were determined numerically for general triaxial
strain cases −1/2 < k < 0 and 0 < k < 1 by Reches [194]. It was found that the optimal parameters
are continuous over the above intervals of k. Consequently, the optimal fault orientations and slip
directions derived above are assembled into the equations

n =

√
2

2

(√
(1 − sinφ)

1 + k
,

√
k(1 − sinφ)

1 + k
,
√

1 + sinφ

)T

s =

√
2

2

(√
(1 + sinφ)

1 + k
,

√
k(1 + sinφ)

1 + k
,
√

1 − sinφ

)T (11.63)

for 0 ≤ k ≤ 1 and

n =

√
2

2

(√
1 − sinφ,

√
|k|(1 + sinφ),

√
(1 − |k|)(1 + sinφ)

)T

s =

√
2

2

(√
1 + sinφ,

√
|k|(1 − sinφ),

√
(1 − |k|)(1 − sinφ)

)T
(11.64)

for −1/2 ≤ k < 0.
The orientations of n and s predicted by Eqs. (11.63)–(11.64) are illustrated in Fig. 11.17. In

the case of plane strain (k = 0), we have

n =

√
2

2

(√
1 − sinφ, 0,

√
1 + sinφ

)T
, s =

√
2

2

(√
1 + sinφ, 0,

√
1 − sinφ

)T
, (11.65)



11.8. RECHES’ MODEL 299

indicating that all faults are parallel to the σ2-axis and slip directions are perpendicular to this axis.
Therefore, the four fault sets degenerate into a conjugate pair (Fig. 11.18(a)). Let θ be the angle
between n and the σ3-axis. This component is given in Eq. (11.65), and is rearranged as

n2
3 =

1
2

(1 + sinφ) (11.66)

=

(√
2

2

)2 ( 1︷ ︸︸ ︷
cos2 φ

2
+ sin2 φ

2
+

sinφ︷ ︸︸ ︷
2 sin

φ

2
cos

φ

2

)
=

(√
2

2

)2(
cos

φ

2
+ sin

φ

2

)2

=

(
cos

π

4
cos

φ

2
+ sin

π

4
sin

φ

2

)2

= cos2
(
π

4
− φ

2

)
= cos2

(
π/2 − φ

2

)
.

Since n3 is the direction cosine of n, cos θ = n3, we obtain

2θ =
π

2
− φ. (11.67)

This is identical to the shear plane angle predicted by the Coulomb-Mohr criterion (Eq. (6.4)).
Consequently, plane strain leads to conjugate faulting.

As k departs from zero, faults make greater angles with σ2-axis (Eqs. (11.63)–(11.64)), while
the angle between n and ε3-axis is constant for any k ≥ 0. In this case, n2

3 has the same form as the
right-hand side of Eq. (11.66). Therefore, the constant angle equals θ in Eq. (11.67).

The angle between n and ε1-axis is constant for any k < 0. Let θ′ be the constant angle (Fig.
11.17). From Eq. (11.64), we have

n2
1 =

(√
2

2

)2

(1 − sinφ) =
(√

2
2

)2(
cos2 φ

2
+ sin2 φ

2
− 2 sin

φ

2
cos

φ

2

)
=

(√
2

2

)2(
cos

φ

2
− sin

φ

2

)2

=

(
sin

π

2
cos

φ

2
− cos

π

2
sin

φ

2

)2

= sin2
(
π

4
− φ

2

)
= cos2

(
π/2 + φ

2

)
.

Combining this and the equation cos θ′ = n1, we obtain 2θ′ = π/2 + φ. Therefore, we have Eq.
(11.67) again, where 2θ+2θ′ = π, i.e., 2θ′ is the supplementary angle of 2θ which is equal to ∠CBF
in Fig. 6.5(a).

In the field, orthorhombic fault sets may be recognized by the fault-slip data shown in Fig. 11.17
and by the cross-cutting relationship between faults of different sets, which warrants the simultane-
ous activity of the fault sets. Krantz [104] identified orthorhombic fault sets in Jurassic sedimentary
rocks. Reches [195] estimated the strain of a rock mass that encompasses a well-exposed system of
orthorhombic fault sets, in good agreement with the theory.



300 CHAPTER 11. DETERMINATION OF STRESS FROM FAULTS

Figure 11.18: Fault sets accommodating a prescribed strain.

11.9 Block rotation and faulting

Highly deformed terrains have intricate fault systems, some of which were accompanied by the
rotation of fault blocks, which is sometime indicated by curved fault striations9. Orogenic and
accretionary belts may have rotated macroscale blocks. If fault activity was abruptly quenched in
a rock mass, fault striations found in the mass may exhibit slip directions just before the end of
the deformation. This section deals with a method to estimate a macro-deformation from internal
mesoscale faults.

Instantaneous deformation is described by LΔt, where L is the velocity gradient tensor and Δt is
a short time interval. The tensor can be divided into two parts (Eq. (2.26)), indicating coaxial and
rigid body rotation, L = D + W. In the previous sections in this chapter, we have assumed that W
is negligible compared to D for determining paleo stress or strain. If this is valid, it can be expected
that an isotropic rock mass has a linear constitutive equation that links D and stress. However, it is

9Curved fault striations do not always indicate block rotations [224].
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the present problem to incorporate the rotation in the fault striation analysis.
To this end, the Twiss-Protzman-Hurst model utilizes the mechanics of micropolar continua

[249]. Micropolar continua are physically idealized macroscopic continua that have microscopic
rigid particles and can model such substances as liquid crystals, rigid suspensions, concrete with
sand, and muddy fluids. Within the present context, the rigid particles simulate fault blocks that can
rotate. The mechanics of micropolar continua is beyond the scope of this book. Interested readers
can consult textbooks [58, 128]. Here, the results of the Twiss-Protzman-Hurst model is briefly
introduced [249].

Micropolar continua is a limited version of micromorphic continua that has deformable mi-
crostructures. The mechanics of micromorphic continua has macro and micro fields of kinematic
variables including position, velocity, and rotation. The macro velocity gradient tensor is written as
usual: L = D + W. The micro velocity gradient tensor is also defined as L = D + W, i.e., we distin-
guish macro and micro quantities by overlines. Fault blocks are assumed to be rigid so that we use
the mechanics of micropolar continua. Then we have D = O, and the micro velocity gradient tensor
equals the micro spin tensor (L = W). Here, the principal values of D are numbered in descending
order, D1 ≥ D2 ≥ D3. Obviously,

1
2
ΔD ≡ 1

2

(
D1 −D3

)
is the maximum shearing rate, just like the maximum shear stress equals half the differential stress.
The dimensionless quantity

ΦD ≡ D2 −D3

D1 −D3

(0 ≤ ΦD ≤ 1)

designates the shape of the instantaneous strain ellipsoid. Here, elongation is positive so that ΦD = 0
and 1 indicate constriction and flattening, respectively. ΦD = 1/2 corresponds to plane strain.

Taking the principal axes of D to define the rectangular Cartesian coordinates O-123, the max-
imum shear rate is on the O-13 plane. The non-diagonal components of a spin tensor make up a
vorticity vector (Eq. (2.43)), and the vorticity is related to an angular velocity (Eq. (2.44)). The
macro and micro angular velocities within the O-13 plane are equal to W 13 and W13, respectively.

The quantity
(
W 13 −W13

)
indicates the difference in the velocities. Accordingly, we define the

dimensionless number

Ω ≡ W 13 −W13

ΔD/2
to indicate the difference.

Let N be the outward unit normal to a small part on the surface of a fault block. The surface is
rubbed by the relative velocity of the surface of the neighboring block. Twiss et al. [249] derived
the direction of the resultant striae, being parallel to the vector

v =

⎛⎝ 1 −N2
1 − ΦDN

2
2

ΦD −N2
1 − ΦDN

2
2

−N2
1 − ΦDN

2
2

⎞⎠T⎛⎝N1

N2

N3

⎞⎠ +
Ω
2

⎛⎝ N3

0
−N1

⎞⎠ . (11.68)



302 CHAPTER 11. DETERMINATION OF STRESS FROM FAULTS

Figure 11.19: Tangent-lineation diagrams showing fault-slip data predicted by the Twiss-Protzman-
Hurst model with different Ω and the same ΦD = 0.5 and the same principal axes of D [249]. The
D-axis indicates the orientation of the maximum instantaneous elongation.

Given the dimensionless numbers ΦD and Ω, the striating direction is calculated with this equation
for any surface with N . If the micro rotation is quenched by the cessation of macro deformation, the
striation on the surface of fault blocks may give constraints to the kinematic parameters ΦD and Ω
and the principal orientations of D.

The fault-slip data predicted by this model is shown in Fig. 11.19. The tangent-lineation dia-
grams in Fig. 11.5 show the fault-slip data specifically for the case of Ω = 0. When |Ω| is small, the
gross pattern in the tangent-lineation diagram is similar to that of the case of Ω = 0. However, it no
longer has the orthorhombic symmetry but makes up a triclinic system. For a large Ω, arrows in the
tangent-lineation diagram show a rotational pattern about D2-axis.

Exercises

11.1 Suppose a rock mass that is cut by a great number of conjugate sets of small-scale faults.
Show that the strain of the mass caused by the internal fault activities is a plain strain. Assume that
the orientation of stress axes does not change in the body, and that faulting are generated following
the Coulomb-Navier criterion.

11.2 Show that the point S in Fig. 11.3 moves from S0 to S1 with an increase of ΦB from 0 to
1, where the points S0 and S1 represent the orientation of the σ1 and σ3 axes, respectively, on the
stereonet.

11.3 Verify that the σ1-axis with a specific stress ratio Φ is constrained by a fault-slip datum to be
in the region to the left of the dotted line in the stereonet in Fig. 11.7.




